LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

FIRST SEMESTER – APRIL 2023

UCH 1501 - BASIC CONCEPTS IN INORGANIC CHEMISTRY

Date: 09-05-2023	Dept. No.	Max. : 100 Marks
Time: 01:00 PM - 04:00 PM		

	SECTION A				
Answer ALL the Questions in one or two sentences					
1.	Fill in the blanks				
a)	The number of valence electrons present in the elements of oxygen group is	K1	CO1		
1-)	A substance that gots and seed are	I/ 1	CO1		
b)	A substance that gets reduced can act as	K1	CO1		
c)	Octet rule refers to the tendency of an atom to attain in the valence shell.	K1	CO1		
d)	The energy gap between conduction and valence band is known as	K1	CO1		
e)	ClF is an example for halogen compound.	K1	CO1		
2.	Choose the correct answer for the following	$(5 \times 1 = 5)$			
a)	The valence shell electronic configuration of the element, chromium is (i) 3d ⁴ 4s ² (ii) 3d ⁵ 4s ¹ (iii) 3d ² 4s ² (iv) 3d ² 4s ²	K1	CO1		
b)	Which of the following is not a common oxidizing agent? (i) ozone (ii) hydrogen peroxide (iii) sulphuric acid (iv) glucose	K1	CO1		
c)	The hybridization of BF ₃ is (i) sp (ii) sp ² (iii) sp ³ (iv) sp ³ d	K1	CO1		
d)	The common example for intrinsic semiconductor is	K1	CO1		
	(i) arsenic (ii) silicon (iii) boron (iv) gallium	TZ 1	001		
e)	The molecular formula of bleaching powder is (i) CaCl ₂ (ii) Ca(OH) ₂ (iii) NaHCO ₃ (iv) Ca(OCl) ₂	K1	CO1		
3.	Match the following	(5 x 1	l = 5)		
a)	Isoelectronic End to end overlap	K2	CO1		
b)	Inert pair effect Germanium	K2	CO1		
c)	Sigma bond Pb and Tl	K2	CO1		
d)	Filled conduction band interhalogen compound	K2	CO1		
e)	Iodine trifluoride O and F	K2	CO1		
4.	Define the following	(5 x 1	1 = 5)		
a)	Pauli's exclusion principle	K2	CO1		
b)	Reducing agent	K2	CO1		
c)	Shielding constant	K2	CO1		
d)	Bonding molecular orbitals	K2	CO1		

e)	Iodo	ometry		K2	CO1
		SECTION B			
Ansv	ver an	y TWO of the following		(2 x 10	= 20)
5.	(a)	Relate Mulliken-Jaffe and Pauling electronegativity scales.	(5)	K3	CO2
	(b)	Outline the salient features of modern periodic table.	(5)	K3	CO2
6.	(a)	<u> </u>		K3	CO2
		method.	(5)		
	$MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$ (Acidic Medium)				
	(b) State the concept of Bronsted-Lowry theory of acid and base.		(5)	K3	CO2
		Classify the following as Bronsted-Lowry acid and base. HCl, NH ₃ , NH ₄ ⁺ and Cl ⁻ .			
7.	(a)	Sketch the Lewis electron dot structure of NH ₃ and CO.	(5)	K3	CO2
	(b)	Arrive at the geometry of XeF ₄ and XeF ₆ using VSEPR theory.	(5)	K3	CO2
8	(a)	Sketch the structure of dioxygen difluoride and perchloric acid.	(5)	K3	CO2
		Mention its hybridisation.			
	(b)	Predict the products for the following reactions:	(5)	K3	CO2
		(i) $ClF_5 + CsF \rightarrow ?$			
		$(ii) X_2 + NH_3 \rightarrow ?$ SECTION C			
Ansv	ver an	ny TWO of the following		(2 x 10) = 20)
9	(a)	Illustrate the postulates of Bohr's atomic model.	(5)	K4	CO3
	(b)	How will you represent the complete wave function in terms of radial	(5)	K4	CO3
10		and angular wave functions?	(5)	77.4	002
10.	(a)	Calculate the oxidation number of underlined elements in the	(5)	K4	CO3
		following. KMnO ₄ , HNO ₃ , CaCr ₂ O ₇ , HClO ₄ , CS ₂			
	(b)	Explain the salient features of liquid ammonia as a solvent.	(5)	K4	CO3
11.	(a)	Illustrate the structure, hybridization and geometry of the following	(5)	K4	CO3
		molecules. (i) BeF ₂ (ii) SnCl ₂	()		
	(b)	Explain the anomalous behaviour of fluorine on comparison with	(5)	K4	CO3
		other halogen elements.			
12.	(a)	Compare the similarities and dissimilarities between VB and MO	(5)	K4	CO3
	(b)	theories. Write the salient features of delta (δ) bond. Compare the stability of	(5)	K4	CO3
	(0)	this bond with sigma and pi-bonds.		IXT	003
	1	SECTION D			
Ansv	ver an	y ONE of the following		(1 x 20	= 20)
13.	(a)	Discuss the periodicity of ionization energy and electron affinity of	(5)	K5	CO4
		the elements in the periodic table.			
	(b)	Compare the structure and properties of thiocyanate and azide ions.	(5)	K5	CO4
	(c)	Explain the double decomposition, disproportionation and electron	(10)	K5	CO4
		transfer reactions with examples.			
14.	(a)	Discuss the postulates of Sidgwick-Powell theory.	(5)	K5	CO4
	(b)	Explain the postulates of VSEPR theory. Mention its limitations.	(5)	K5	CO4

	(c)	Summarize the essential features of molecular orbital theory (MOT).	(10)	K5	CO4
		Write the necessary criteria for effective overlap of atomic orbitals in			
		MOT.			
		SECTION E			
Answer any ONE of the following $(1 \times 20 = 20)$					= 20)
15.	(a)	Explain the diagonal relationship between Li and Mg.	(5)	K6	CO5
	(b)	The following molecules have comparable molecular formula, but their shapes are different. Illustrate with the help of VSEPR theory. ON ₂ , OF ₂ , OCl ₂	(5)	K6	CO5
	(c)	Explain the Lewis and Lux-Flood concepts of acid and base with an example.	(10)	K6	CO5
16.	(a)	Construct the qualitative MO diagram of O_2^{2+} ion and obtain the bond order.	(5)	K6	CO5
	(b)	Explain the salient features of extrinsic semiconductors. How are they classified?	(5)	K6	CO5
	(c)	Describe a method to estimate the amount of chlorine present in bleaching powder.	(10)	K6	CO5

\$\$\$\$\$\$\$